Anion exchange membrane (AEM) for costcompetitive water electrolysis by Evonik

Teaser presentation

Nov. 2021 | Patrick Borowski, Dr. Christian Däschlein, Dr. Franziska van Krüchten, <u>Dr. Artjom</u> <u>Maljusch</u>, Dr. Jeroen Ploegmakers

To the best of our knowledge the information in this presentation was compiled from sources believed to be reliable for informational purposes only. All pieces of information in this presentation were summarized by Evonik Operations GmbH and should provide an actual overview of the status of our innovation technology and its business potential. All information is highly confidential. The partial reproduction or copy of it is only allowed after agreement with the Evonik Operations GmbH.

Evonik at a glance Leading beyond chemistry to improve life, today and tomorrow

Green hydrogen will play a central role in a defossilized society achieving the climate targets of Germany and the EU

Current and future utilization of defossilized hydrogen

Mobility / Transportation

The use of green hydrogen or syn-fuels enables the defossilization of mobility and transportation.

Feedstock chem. Industry Green hydrogen can reduce the carbon footprint of products from chem. industry.

Industry

Hydrogen as a reducing agent or as fuel in industrial processes can massively reduce CO_2 emissions.

Energy Management

Hydrogen can be used to store renewable energy and enable efficient energy management. Our AEM technology with our DURAION[®] membrane will reduce the CAPEX and OPEX costs of electrolysis.

To meet the EU target to have 40 GW electrolysis capacity installed in land by 2030, the CAPEX and OPEX costs of electrolyzers must be reduced massively.

With our membrane technology, we significantly contribute to the transition to a sustainable gas economy

- Raw biogas from organic waste is converted into sustainable biomethane and "green" CO₂
- 2. Our hydrogen extraction membranes enable to use existing natural gas pipelines to transport and extract green hydrogen

In the **production of synthetic biomethane** from CO_2 and green hydrogen, we ensure efficient product separation

3. With our anion exchange membrane DURAION[®], we contribute to the **breakthrough of electrolytic production of green hydrogen** in the future

The anion exchange membrane (AEM) water electrolysis combines the benefits of PEM* & AEL* water electrolysis without their major drawbacks

AEM electrolysis	PEM electrolysis	Alkaline electrolysis
 High production rates 	 High production rates 	 Low production rates
 Pressurized H₂ production 	 Pressurized H₂ production 	 No pressurized H₂ production
 Dynamic operation 	 Dynamic operation 	 Unflexible operation
 Inexpensive materials & electrodes 	 Noble metal and titanium materials & electrodes 	 Inexpensive materials & electrodes
<u> </u>	<u> </u>	<u> </u>
CAPEX Low OPEX Low	CAPEX High OPEX Low	CAPEX Low OPEX High

AEM electrolysis – The best of two worlds!

`*PEM: Proton exchange membrane | AEL: Alkaline electrolysis

The membrane is the heart of the electrolyzer: DURAION[®] pushing the performance of Evonik polymer and membrane competence

Schematic cell design of AEM electrolysis

Experimental lab data indicates that DURAION[®] enables less operation costs compared to PEM electrolysis with a Nafion[®] membrane

Ex-situ and in-situ performance data of DURAION[®] in comparison to the PEM technology state-of-the-art Nafion[®] membrane

Nafion [®] N-115	DURAION®
111*	108**
14	13
0.08	0.4
144	60
9.8	3.9
	Nafion® N-115 111 [*] 14 0.08 144 9.8

lab scale, single cell, 25 cm² active area, both electrodes fed by electrolyte, 60 °C, ambient pressure * measurend in H⁺ form, ** measurend in OH⁻ form, *** hydrogen permeation at 35 bar H₂ pressure & at 40°C

8 | DURAION® teaser presentation | Nov. 2021

DURAION[®] enables the cost-efficient production of green hydrogen via water electrolysis

Key Benefits of DURAION and the Evonik AEM technology

 \checkmark

 \checkmark

Best in class CAPEX ... Best in class OPEX ... ✓ No Ti, no Pt coated cell materials Highest current efficiencies compared \checkmark to benchmark required Possibility pressurized (30 bar), ✓ No PMG electrodes required, especially \checkmark dynamic operation Iridium Best in-class performance ... Best in class technology ... Very high ionic conductivity ... to enable the cost-efficient \checkmark production of green hydrogen! Excellent chemical stability in aggressive media Distinguished mechanical integrity

Evonik guarantees scalable and customizable solutions based on our pronounced and backward-integrated monomer and polymer expertise.

Our polymer expertise makes us unique among the developers of anion exchange membranes.

Is there interest in further information?

Your contacts for further information

Dr. Artjom Maljusch Technology Development AEM <u>artjom.maljusch@evonik.com</u>

Dr. Christian Däschlein Director Hydrogen Economy christian.daeschlein@evonik.com

